An Ensemble Spatiotemporal Model for Predicting PM2.5 Concentrations

نویسندگان

  • Lianfa Li
  • Jiehao Zhang
  • Wenyang Qiu
  • Jinfeng Wang
  • Ying Fang
چکیده

Although fine particulate matter with a diameter of <2.5 μm (PM2.5) has a greater negative impact on human health than particulate matter with a diameter of <10 μm (PM10), measurements of PM2.5 have only recently been performed, and the spatial coverage of these measurements is limited. Comprehensively assessing PM2.5 pollution levels and the cumulative health effects is difficult because PM2.5 monitoring data for prior time periods and certain regions are not available. In this paper, we propose a promising approach for robustly predicting PM2.5 concentrations. In our approach, a generalized additive model is first used to quantify the non-linear associations between predictors and PM2.5, the bagging method is used to sample the dataset and train different models to reduce the bias in prediction, and the variogram for the daily residuals of the ensemble predictions is then simulated to improve our predictions. Shandong Province, China, is the study region, and data from 96 monitoring stations were included. To train and validate the models, we used PM2.5 measurement data from 2014 with other predictors, including PM10 data, meteorological parameters, remote sensing data, and land-use data. The validation results revealed that the R² value was improved and reached 0.89 when PM10 was used as a predictor and a kriging interpolation was performed for the residuals. However, when PM10 was not used as a predictor, our method still achieved a CV R² value of up to 0.86. The ensemble of spatial characteristics of relevant factors explained approximately 32% of the variance and improved the PM2.5 predictions. The spatiotemporal modeling approach to estimating PM2.5 concentrations presented in this paper has important implications for assessing PM2.5 exposure and its cumulative health effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms

PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...

متن کامل

Spatiotemporal trend of ambient air particulate matter with aerodynamic diameter less than 2.5 and 10 μm and ozone in Tabriz city, Iran, during 2006–2017

Background and Objective: This study was conducted to investigate the long-term temporal trends and spatial variations of ambient PM10, PM2.5, O3, concentrations in Tabriz city during the years 2006-2017. Materials and Methods: Real-time hourly concentrations of PM10, PM2.5, O3 measured at nine air quality monitoring stations (AQMSs) were obtained from the Tabriz Department of Environment (TDo...

متن کامل

Predicting distribution of Eurasian Lynx (Lynx lynx) using an ensemble modeling approach: A Case Study: Saveh Zarandieh Kharaghan Area, Markazi Province

Adequate knowledge about suitable habitats for wildlife is essential to prevent habitat destruction and extinction of species and for their conservation and management. The Eurasian lynx is one of the mostly distributed cats in Asia. In this study, we applied an ensemble habitat suitability modeling approach, using ten predictor variables to model Eurasian Lynx’s habitat suitability in Saveh Za...

متن کامل

Spatiotemporal Pattern of PM2.5 Concentrations in Mainland China and Analysis of Its Influencing Factors using Geographically Weighted Regression

Based on annual average PM2.5 gridded dataset, this study first analyzed the spatiotemporal pattern of PM2.5 across Mainland China during 1998-2012. Then facilitated with meteorological site data, land cover data, population and Gross Domestic Product (GDP) data, etc., the contributions of latent geographic factors, including socioeconomic factors (e.g., road, agriculture, population, industry)...

متن کامل

Spatiotemporal Variability of Remotely Sensed PM2.5 Concentrations in China from 1998 to 2014 Based on a Bayesian Hierarchy Model

With the rapid industrial development and urbanization in China over the past three decades, PM2.5 pollution has become a severe environmental problem that threatens public health. Due to its unbalanced development and intrinsic topography features, the distribution of PM2.5 concentrations over China is spatially heterogeneous. In this study, we explore the spatiotemporal variations of PM2.5 po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017